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1 Derivation of synchrotron power spectrum
Synchrotron emission is radiation from relativistic, charged particles moving in a magnetic
field. The equation of motion of such a charged particle is

d~p

dt
=

d

dt
(γm~v) =

q

c
~v × ~B (1)

in cgs units. We neglect ~E in most scenarios in astrophysics because, if there were an
electric field, free charges would immediately move to neutralize it. The motion of the
charged particle is helical around the magnetic field line with

ωB =
qB

γmc
(2)

as the frequency of gyration.
We go to the rest frame of the particle, where the acceleration is nonzero, find the emitted

power, and transform to the lab frame. Use Larmor’s formula for a slowly-moving particle:

P =
2q2

3c3

∣∣∣~̈r∣∣∣2 (3)

In the moving frame, then,

P ′ =
dW ′

dt′
=

2q2

3c3
|~a′|2 =

2q2

3c3

(
a′‖

2
+ a′⊥

2
)

(4)

and, transforming to the lab frame,

P =
dW

dt
=

dW ′

dt′
(5)

if there is no net momentum in the primed frame.

a‖ = 0 (6)

a⊥ = ωBv⊥ =
qBv sinα

γmc
(7)
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where a‖ and a⊥ are parallel and perpendicular, respectively, to ~β, v⊥ is perpendicular to ~B,
and α is the pitch angle. After the transformation of accelerations,

a‖ =
1

γ3
a′‖ (8)

a⊥ =
1

γ2
a′⊥, (9)

we find

P =
2

3

q4

m2c3
γ2β2B2 sin2 α. (10)

However, 〈sin2 α〉 = 2
3
, and we can substitute UB = 1

8π
B2 as the energy of the magnetic field,

and we arrive at the common formula for electrons:

P =
4

3
nσT cγ

2β2UB (11)

This assumes an electron density n and an isotropic distribution.

2 Synchrotron spectrum of a single electron

We consider a simple magnetic field ~B = Bẑ. In this field, an electron moves relativistically
with frequency

ωB =
qB

γmc
=

eB

γmec
(12)

as shown in Figure 1. Because it moves relativistically, its radiation is beamed into a small
cone in the forward direction. The particle radiates towards the observer only over an angle
range ∼ 2/γ during a full orbit. The electric field at the observer looks like that shown in
Figure 2.
The spectral power from a single electron is given by

P (ω) dω =

√
3

2π

q3B sinα

mc2
F (x) dω (13)

where x ≡ ω/ωc,

ωc ≡
3

2
γ3ωB sinα, (14)

and

F (x) = x

∞∫
x

K5/3(ξ) dξ. (15)

Note that the power is just a complicated coefficient multiplied by a dimensionless function,
so all the information about the spectral shape is in F (x). In the extreme limits,
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Figure 1: Single electron following a helical path in a magnetic field coming out of the page.
Because the particle move relativistically, its radiation is beamed forward as shown.

Figure 2: Electric field at an observer due to the synchrotron emission of a single electron.
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F (x) ≈


[

4π√
3Γ( 1

3)

] (
x
2

)1/3
, x� 1(

π
2

)1/2
x1/2e−x, x� 1

. (16)

So the power spectrum of a single electron is ∼ ω1/3 when ω � ωc and ∼ e−x when ω � ωc,
with a turnover occurring when ω = ωc.

3 Synchrotron cooling
The particle energy is always given by E = γmc2. Additionally,

dE

dt
= −Psynch; (17)

that is, the change in energy is proportional to the power. So we can write

mc2 dγ

dt
= −4

9

q2

m2c3
B2γ2. (18)

If, at time t = 0, γ = γi is the initial Lorentz factor,

1

γ(t)
=

1

γi
+
t

ts
, (19)

where ts is some characteristic timescale,

ts =
γmc2

P
=

9

4

(mc2)
4

Eq4B2c
. (20)

Assume γi ∼ ∞, so 1/γi ≈ 0. Then, for electrons,

γ(t) ≈
(
2.5× 1013

)( B

1 μG

)−2(
t

1 yr

)−1

(21)

for electrons. The system basically does not care about initial conditions, just on the amount
of time elapsed! Using the formulæfrom the previous sections, we can sketch the evolution
of a synchrotron spectrum over time, as in Figure 3.

4 Radiometer equation
We return to the diagram of an antenna with receiver, etc., shown in Figure 4. Based on
the derivation in the last set of notes,

σ2
3 =

[Gk (TA + Trx)]2 ∆ν

∆ντ
(22)

This leads to the “ideal radiometer equation,”
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Figure 3: Cooling of a synchrotron spectrum.
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Figure 4: Diagram of antenna, receiver, and detector.
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∆T =
Trx + TA√

τ∆ν
, (23)

where ∆T is the variation in measured temperature. It is the lower limit for integrated noise,
but note that there are many noise sources that could add to this!

5 Friis equation
Consider a signal path that includes multiple components, each with its own intrinsic noise
temperature and gain. The Friis equation (not the Friis transmission equation) tells us that

Tnoise = Trx1 + Trx2/G1 + Trx3/G1G2 + · · · (24)

where Gn is the gain of the nth component and Trxn is its noise temperature.

6 Y factor
The Y factor is quite simple: it is just a power ratio:

Y =
Trx + Thot

Trx + Tcold

(25)

It gives some measure of “quality” of your receiver, since Y → ∞ is a very good receiver.
You should watch out for systematic effects that tend to reduce Y .
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