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1 Radiation
Radiation is both a wave phenomenon and a particle phenomenon. The speed of light is
c = 2.998× 108 m s−1.

• Wave phenomenon —We will use λ to refer to wavelength and ν to refer to frequency
of a wave. They are related by c = λν.

• Particle phenomenon — The energy of a photon is given by E = hν = hc/λ, and
its momentum is given by p = E/c. h = 6.626× 10−34 J s is Planck’s constant.

2 Specific intensity
Specific intensity is denoted by Iν . It is defined as

Iν =
dE

dA dt dν dΩ
(1)

Specific intensity is a measure of “brightness” with units J m−2 s−1 Hz−1 sr−1. It is equal to
the energy dE crossing a differential area dA perpendicular to the ray in a time dt in the
frequency range ν to ν + dν in a differential solid angle dΩ. It is a function of position ~r,
time t, and direction ~Ω, but it does not encode information about polarization or reference
frame. Specific intensity is intrinsic to the radiation field but is not measured directly —
it is inferred. Note that sr is the abbreviation for steradian, a measure of “solid angle” (see
Figure 1).

2.1 Moments of specific intensity

If we integrate Iν over all frequencies, we obtain the frequency-integrated intensity, also
called the integrated intensity or bolometric intensity.

I ≡
∞∫

0

Iν dν (2)
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Figure 1: Illustration of a solid angle.

The average intensity over all directions is

Jν ≡

∫
Ω

Iν dΩ∫
Ω

dΩ
(3)

≡ 1

4π sr

∫
Ω

Iν dΩ, (4)

and the average bolometric intensity is given by

J ≡
∞∫

0

Jν dν. (5)

J has units of J cm−2 s−1 sr−1. The energy density is given by

U ≡ J

c
× (4π sr) (6)

and has units of J cm−3. The spectral energy density

Uν ≡
Jν
c
× (4π sr) (7)

also encodes frequency information.
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Figure 2: An area element with surface normal n̂ and incident ray at angle θ.

2.2 Flux

A ray perpendicular to a surface “sees” the full area; a ray parallel to a surface “sees” no
area. Therefore, to find the flux through the surface, the integral must contain a cos θ term,
where θ is the angle between the ray and the surface normal (see Figure 2). Flux in radio
astronomy is commonly written as Sν . We find the flux by integrating out the solid angle
from specific intensity:

Sν =

∫
Ω

Iν cos θ dΩ (8)

The bolometric flux is defined as

S ≡
∞∫

0

Sν dν. (9)

Suppose the source subtends a small angle θ0 on the sky, as observed by us. Then we can
write Equation 8 as

Sν =

2π∫
0

θ0/2∫
0

Iν sin θ cos θ dθ dφ (10)

= 2π

∫
Iν sin θ cos θ dθ (11)

≈ 2πIν

∫
sin θ cos θ dθ (12)

= πIν sin2

(
θ0

2

)
(13)

≈ Iν ×
πθ2

0

4
, (14)

3



where we apply the small-angle approximation at the last step. We also could have written
Sν ≈ IνΩ0.

2.3 Pressure

Think of radiation as a gas of photons; each photon carries a momentum. Then the pressure
due to radiation is given by

Pν ≡
1

c

∫
Ω

Iν cos2 θ dΩ. (15)

One factor of cos θ in this integral is accounted for by the direction of the photon; the second
is related to the direction of the momentum. Pν has the same units as Uν , but note that it
is a very different quantity!

2.4 Intensity as a constant

In a vacuum, intensity is a constant. That means that radiation from a light turned on in
Los Angeles is the same by the time it gets to Boston! A sketch of the proof follows.

Consider a collection of all rays that pass through both dA1 and dA2, separated by a
distance R, as in Figure 3. In a time dt, the energy through dA1 is

dE1 = Iν,1 dA1 dt dΩ1 dν, (16)

and, similarly, the energy through dA2 is

dE2 = Iν,2 dA2 dt dΩ2 dν. (17)

By construction, dE1 = dE2, and we can also write

dΩ1 =
dA2

R2
(18)

dΩ2 =
dA1

R2
(19)

from the definition of solid angle. Substituting, we find Iν,1 = Iν,2.

2.5 Example of a simple radiation field

Consider the simple field

I(θ) = I0 (1 + ε cos θ) . (20)

For this field, we find

J =
I0

4π

2π∫
0

π∫
0

(1 + ε cos θ) sin θ dθ dφ = I0 (21)
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Figure 3: Geometry for the proof that specific intensity is constant along a ray in a vacuum.

U =
4π

c
J =

4π

c
I0 (22)

S = I0

2π∫
0

π∫
0

(1 + ε cos θ) cos θ sin θ dθ dφ =
4π

3
εI0 (23)

P =
I0

c

2π∫
0

π∫
0

(1 + ε cos θ) cos2 θ sin θ dθ dφ =
1

3
U. (24)

S characterizes the asymmetry of the radiation, hence the factor of ε. P = 1
3
U is true for

this problem (and many others) but is not necessarily true for every radiation field.

3 Blackbody radiation
The specific intensity of a blackbody emitter is given by

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
(25)

Bλ(T ) =
2hc2

λ5

1

ehc/λkT − 1
(26)

An interesting property of the blackbody spectrum is that curves at different temperatures
will never overlap; increasing the temperature will increase the brightness at all frequencies.

By equating the derivative with respect to ν (or λ) with zero, it is possible to numerically
derive the wavelength at which the curve peaks. The relation is not the same for both Bν

and Bλ! The Wien displacement law is
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medium

Figure 4: An absorbing and emitting medium, showing the ray coordinate s.

λmaxT = 0.51 cm K, for Bν (27)
= 0.29 cm K, for Bλ. (28)

The first of these equations is the most useful for this class.
When hν � kT , we are in the Rayleigh-Jeans “tail” of the blackbody curve, where we

can approximate

Bν ≈
2ν2

c2
kT. (29)

It is important to remember the regime in which this equation applies, however! It is not an
appropriate approximation if hν � kT .

With this new approximation for the specific intensity, we can now say

Sν = IνΩ =
2ν2

c2
kTΩ, hν � kT. (30)

For a blackbody, we see that Sν ∝ ν2, but not everything is a blackbody. For example,
synchrotron radiation has Sν ∝ ν−0.7.

4 Radiative transfer equation
Let s denote distance along a ray of radiation. We have already shown that dIν

ds
= 0 in a

vacuum. Now we consider emitting and absorbing media (see Figure 4).

4.1 Emitting medium

We define

jν =
dE

dV dt dν dΩ
(31)
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as the monochromatic emission coefficient. It has units of J cm−3 s−1 Hz−1 sr−1. In the
absence of absorption, the radiative transfer equation is

dIν = jν ds. (32)

That is, we are essentially “adding” intensity along the ray, in proportion to the emission
coefficient.

4.2 Absorbing medium

Again, let s denote the distance along a ray. The monchromatic absorption coefficient is
αν , which we can interpret as the inverse length required to reduce the intensity by an e-
fold; it is equal to nσ, where n is the number density of absorbing particles and σ is their
cross-sectional area. αν has units of cm−1. In the absence of emission, the radiative transfer
equation is

dIν = −ανIν ds. (33)

This time, we are removing intensity along the ray, in proportion to both the absorption
coefficient and the current value of Iν . This makes intuitive sense, because we cannot remove
more intensity than we currently have.

Another useful quantity related to absorption is the opacity κν = αν/ρ, where ρ is the
mass density.

4.3 Emitting and absorbing medium

Putting the previous results together, the full radiative transfer equation is

dIν
ds

= jν − ανIν . (34)

5 Temperature as a scale for measurement
The power we observe from a source is P = kT∆ν, where ∆ν is the bandwidth. We gener-
ally characterize radio noise by temperature, since k and ∆ν are constant. Some important
temperatures you will see in equations in this class are Trx, the receiver temperature, and
TB, the brightness temperature. The brightness temperature is the temperature at which
Sν = Bν(T ) Ω. Note that this is not a physical temperature! It is just a convenient param-
eterization. For example, pulsars and masers have TB � 109 K.

6 Statistics

6.1 Expected value and probability

Consider some function f of a random variable x with pdf (probability density function) p.
By definition,
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∞∫
−∞

p(x) dx = 1. (35)

The expected value of f is

〈f〉 =

∫
f(x) p(x) dx. (36)

As a simple example, take f(x) = x. Then we can compute the expected value of x as

〈x〉 =

∫
xp(x) dx. (37)

We can also compute, say, the probability of x falling in some range x1 to x2 by

P (x1 < x < x2) =

x2∫
x1

p(x) dx. (38)

6.2 Multiple variables

For independent variables x, y with z = x+ y, we have

p(z) = p(x)⊗ p(x) (39)
µz = µx + µy (40)
σ2
z = σ2

x + σ2
y , (41)

where the last equation assumes Gaussian noise.

6.3 Gaussian distribution

The Gaussian, or normal, distribution is one of the most important in statistics. It is defined
by

G(x) =
1√
2πσ

exp

[
−(x− µ)

2σ2

]
(42)

where µ is the mean and σ is the standard deviation. We can easily show that 〈x〉 = µ and
〈(x− µ)2〉 = σ2; this second quantity is called the variance.

The standard deviation defines the “width” of the normal distribution, but we could
just as easily use the full-width half-max (FWHM), which is defined as the width of the
distribution when it is at half its maximum value. For the Gaussian, FWHM ≈ 2.355σ.

6.4 Central Limit Theorem

The Central Limit Theorem states that independent and identically distributed variables
a+ b+ c+ · · · will be normally distributed. See Figure 5 for an example.
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Figure 5: Illustration of the Central Limit Theorem. We take the arithmetic mean of n sam-
ples from a binomial distribution B(10, 0.5) and plot the smoothed histogram for increasing
n. Visually, this distribution converges to a Gaussian with µ = 5.
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Figure 6: Diagram of antenna, receiver, and detector.

6.5 Photon statistics

In optical astronomy, photons are “rare” events, so we must use Poisson statistics to model
them. The Poisson distribution is a discrete distribution defined by

P (k) =
λk

k!
e−λ (43)

where λ is the average number of photons per time interval (not wavelength) and k is the
number of observed photons. Luckily, this isn’t optical astronomy! We are not counting
individual photons in radio astronomy. The signal we observe is instead a Gaussian random
process (GRP).

7 Antennas
Fundamental properties of an antenna are its effective collecting area (related to the geo-
metric area by an efficiency factor η < 1 by Aeff = ηAgeom), beam angle, and beam shape.
The beam angle and solid angles are, approximately,

θB ≈
λ

D
(44)

ΩB ≈
πθ2

B

4
. (45)

From the power equation in the previous section, we can also write P = 1
2
SνAeff∆ν, where

Aeff is the effective collecting area and the factor of 1/2 comes from the fact that the antenna
only collects power that is matched to its polarization.

8 Receivers
A receiver (see Figure 6) is characterized by its temperature Trx, gain G, and bandwidth
∆ν. To whatever signal we detect with a receiver, we add noise GkTrx∆ν; quantum theory
dictates that Trx > hν/k.

• By construction, V0 is a Gaussian random variable (GRV). 〈V0〉 = 0 and 〈V 2
0 〉 = kTA∆ν.
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• V1 is also a GRV, since it depends linearly on V0. 〈V1〉 = 0 and 〈V 2
1 〉 = Gk (TA + Trx) ∆ν.

• V2 = V 2
1 is not a GRV. 〈V2〉 = 〈V 2

1 〉 and 〈V 2
2 〉 = 〈V 4

1 〉 = 3〈V 2
1 〉2 = 3 [Gk (TA + Trx) ∆ν]2.

This result depends on Isserlis’ Theorem:

〈xn〉 =

{
0, n odd

(n− 1)σn, n even
(46)

The variance is σ2
2 = 〈V 2

2 〉 − 〈V2〉2 = 2 [Gk (TA + Trx) ∆ν]2.

• V3 = 〈V2〉τ , so 〈V3〉 = 〈V2〉 = Gk (TA + Trx) ∆ν and σ2
3 = σ2

2/ (2τ∆ν).
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